GENERAL DYNAMICS

Armament Systems

Derivation of a Pressure Limit for the M61 Family of Guns

Jim Talley

Systems Weaponization Engineering General Dynamics Armament Systems Burlington, Vermont USA

36th Gun & Ammunition Symposium & Exhibition San Diego, California

The M61 Family of Guns

The M61 History Project Vulcan: 1949 - 1959

The Pressure Definition Problem

- The M61 was designed before sophisticated analytical techniques were common.
- Ammunition pressure measurement technology from the 1930s & 40s did not provide an accurate peak chamber pressure for minor caliber gun design.

The 'Model C' Gatling Gun Predecessor to the M61

The M61 Reverse Engineering Program

- Detailed experimental and analytical look at the M61.
- USAF-funded through a USN contract vehicle.
- First comprehensive look at the M61 in 30 years.

M61 Vulcan Firing Loads

36th Gun & Ammunition Symposium & Exhibition
April 11, 2001

M61 Parts Life vs. Peak Chamber Pressure Relationships

The Next Step

 With the results of the M61 Reverse Engineering Study, we can finally generate a methodology to answer the question:

What Peak Pressure Can the M61 Tolerate?

The Incorrect Way...

The Correct Way

- Assume a known distribution of pressures & temperatures are fired.
- Assess the damage caused by each round.
- Estimate the number of rounds to failure.

Step 1: Assume a Temperature Distribution

GENERAL DYNAMICS

Armament Systems

36th Gun & Ammunition Symposium & Exhibition

April 11, 2001

Step 2: Assume a Pressure Distribution

GENERAL DYNAMICS

Armament Systems

36th Gun & Ammunition Symposium & Exhibition
April 11, 2001

Step 3: Correct the Pressures for Temperature Effects

GENERAL DYNAMICS

Armament Systems

36th Gun & Ammunition Symposium & Exhibition

April 11, 2001

Step 4: Assess the Gun Damage

- Mean pressure varied from 54,000 to 70,000 psi at 70°F
- Standard Deviation varied from 500 to 3,000 psi.
- Even temperature distribution from -65 to +160°F.
- Miner's Rule applied until failure is predicted.

Step 5: Map the Predicted MRBF Results For No Maintenance

Step 6: Set the Limits to Maintain a Desired Maintenance Interval

Summary Points

- Ammunition pressure limits are gun constraints and belong to the weapon.
- Analysis can be used as a basis to estimate the structural response of the weapon to varying ammunition behavior.
- Realistic ammunition pressure limits can be derived that take into account:
 - ➤ Random ammunition effects
 - ➤ Temperature effects
 - ➤ Effects of aging